Commissioning Experience of te-cyc[™] Plant at Hawkhurst South WwTW

European Wastewater Management Conference

5th July 2023

Ben Hazard, Process Engineer, Te-Tech Process

Solutions

Water

Connor Sandalls, Process Engineer, Southern

PROCESS SOLUTIONS

Hawkhurst South WwTW

Wastewater Treatment Works located in Kent

Project Drivers:

Ρ	Total Phosphorus Consent:	0.3 mg/l
Fe	Total Iron Consent:	4 mg/l
	Tightened Ammonia Consent:	3 mg/l
	Population Growth:	1,976 to 2,285
	Increased FFT:	11 l/s to 15.8 l/s

WwTW Prior to Scheme

Design Basis

Construction

11

Process Commissioning

Process Commissioning

- The te-cyc[™] plant was commissioned with the new Low TP permit already in force
- Initial commissioning undertaken in winter / higher flow period
- Biological load currently accepted by the plant is less than Design load.
- Site is currently treating an FFT of 11 l/s, with the future FFT of 15.8 l/s being implemented soon
- te-cyc[™] designed to treat future FFT (15.8 l/s) and will be receiving these flows subject to completion of hydraulic modifications to inlet works

Seeding the Basins

- Seed sludge taken from another SBR achieving significant Bio-P removal to help speed up commission
- Initial Operating MLSS 3 4 g/l
- te-cyc[™] effluent was initially returned through the trickling filters to safeguard compliance during commissioning

Initial Compliance Safeguard

TE TECH

Commissioning Issue

- Turbidity Spikes from Basin No.2 started to develop
- Turbidity would increase from ~2 NTU to over 30 NTU at the onset of a decant
- No solids or scum carry over witnessed when the spikes occurred...

Tank drain and inspection required

Tank Drain and Inspection

What did we learn?

- Where and what the turbidity spikes were coming from...
- A better idea of how "best" to remove the sludge and reseed the basin

But what about the operation of the remaining basins?

Operating with 1 No. Basin OOS

- Operating MLSS ~2.5 3.0 g/L ensured plenty of biological treatment capacity
- However, shorter cycle times means there was more sludge with less time for Settlement/Decant phase

Time (h)	ו.33			7 2.66		4	
Basin 1	sin 1 Fill/Aerate		Aerate	Settle		Decant	
Basin 2	Aerate	Settle	Decant		Fill/Aerate		
Basin 3	Basin 3 Decant		Fill/Aerate		Aerate	Settle	

Time (h)		1.5	2.25	3		
Basin 1	Fill/A	erate	Settle	Decant		
Basin 2	OOS					
Basin 3	Settle	Decant	Fill/Aerate			

This resulted in sludge blanket carry over

MLSS Control – Striking The Balance

Lower Operating MLSS limit

- Less biological capacity -Potentially limits ammonia, BOD and P performance
- Less sludge to handle

Higher Operating MLSS limit

- More biological capacity -Enhanced ammonia, BOD and potentially P removal
- More sludge to handle

Better control of the operating MLSS is required when one basin is out of service. Higher Operating MLSS carries the risk of blanket washout

MLSS Control – Impact of Ferric Dosing

MLSS Control – Impact of Ferric Dosing

MLSS Control – The Key Variable For Performance

More work is required to strike the balance between ferric dosing, operating MLSS and settleability. New low total P permit is LIVE!

Primary ferric dosing reduces the required MLSS and seems to improve settleability of sludge from improved cosettlement

•

 Reduced MLSS potentially limits the capacity for bio-P removal

Realised Benefits

- TE TECH
- Hawkhurst is a soft water area. This is known to require higher ferric dosing rates and alkalinity supplementation usually caustic dosing. Had we designed a conventional attached growth process a new caustic dosing system would have been required.

Caustic dosing was part of the interim process and required ~5 m³ per month

• Multiple drivers:

New TP permit Tightened Ammonia Permit Increased FFT

- Technology able to fit on an already constrained site
- TN removal achieved would benefit if TN permit is applied in the future

Performance Data So Far – te-cyc[™] Effluent (Apr–Jun 2023)

The following data is based on te-cyc[™] treating an FFT of 11 I/s, not its designed FFT of 15.8 I/s which will be tested once the inlet modifications are completed

• Total Phosphorus results show large range showcasing the various changes and challenges seen through commissioning – Site Final Effluent is in compliance with the average TP permit to date

te-cyc [™] Effluent	Ammonia (mg/l)	BOD (mg/l)	Total Iron (mg/l)	Total Phosphorus (mg/l)	Solids (mg/l)
Max	2.29	7.79	0.58	1.40	16.10
95%ile	1.15	5.84	0.37	1.32	12.76
50%ile	0.01	2.96	0.20	0.79	6.40
Ave	0.24	3.24	0.22	0.75	7.29
10%ile	0.01	1.00	0.11	0.15	2.00
Min	0.01	1.00	0.08	0.12	2.00
Count	29	28	28	28	29

- Total Nitrogen removal approximately 70% on average
- Alkalinity residual 65 mg/l (minimum sampled at 40 mg/l) without caustic dosing

Above results are samples taken directly from the SBR effluent pipe

What Happens Next

- Inlet modification to allow 15.8 I/s FFT to te-cyc[™] plant
- Continue with MLSS control finding a suitable concentration for inlet BOD in conjugation with ferric dosing changes
- Introduce secondary trim dose
- Work to be undertaken to old Humus Tank for additional sludge storage
- When above is complete Trial to separate SAS and move away from co-settlement

What Happens Next

• Early period of commissioning showing good Bio-P removal

• Recent 14 days o-P performance

Thanks for listening– Any questions?

